p-group, metabelian, nilpotent (class 2), monomial
Aliases: C42.262C23, C4⋊C8⋊84C22, (C4×C8)⋊54C22, C24.78(C2×C4), C8⋊C4⋊56C22, C42.206(C2×C4), (C2×C8).475C23, (C2×C4).643C24, C8○2M4(2)⋊28C2, C42.6C4⋊45C2, C42⋊C2.30C4, C22.15(C8○D4), C42.12C4⋊47C2, C4.30(C42⋊C2), C2.12(Q8○M4(2)), C22⋊C8.229C22, C24.4C4.24C2, C23.226(C22×C4), (C2×C42).756C22, (C23×C4).523C22, C22.171(C23×C4), (C22×C8).431C22, C42.7C22⋊21C2, C42.6C22⋊29C2, (C22×C4).1273C23, C42⋊C2.349C22, C22.13(C42⋊C2), (C2×M4(2)).345C22, (C2×C4⋊C4).69C4, C2.12(C2×C8○D4), C4⋊C4.219(C2×C4), C4.294(C2×C4○D4), C22⋊C4.89(C2×C4), (C2×C22⋊C8).47C2, (C2×C22⋊C4).46C4, (C2×C4).828(C4○D4), C22⋊C8○(C42⋊C2), (C2×C4).259(C22×C4), (C22×C4).337(C2×C4), C2.43(C2×C42⋊C2), (C2×C42⋊C2).58C2, SmallGroup(128,1656)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C2 — C4 — C2×C4 — C22×C4 — C42⋊C2 — C2×C42⋊C2 — C42.262C23 |
Generators and relations for C42.262C23
G = < a,b,c,d,e | a4=b4=d2=e2=1, c2=b, ab=ba, cac-1=a-1, ad=da, eae=ab2, bc=cb, bd=db, be=eb, dcd=a2c, ce=ec, de=ed >
Subgroups: 284 in 201 conjugacy classes, 134 normal (36 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, C23, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), C22×C4, C22×C4, C22×C4, C24, C4×C8, C8⋊C4, C22⋊C8, C22⋊C8, C4⋊C8, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C42⋊C2, C42⋊C2, C22×C8, C2×M4(2), C23×C4, C8○2M4(2), C2×C22⋊C8, C24.4C4, C42.6C22, C42.12C4, C42.6C4, C42.7C22, C2×C42⋊C2, C42.262C23
Quotients: C1, C2, C4, C22, C2×C4, C23, C22×C4, C4○D4, C24, C42⋊C2, C8○D4, C23×C4, C2×C4○D4, C2×C42⋊C2, C2×C8○D4, Q8○M4(2), C42.262C23
(1 19 31 14)(2 15 32 20)(3 21 25 16)(4 9 26 22)(5 23 27 10)(6 11 28 24)(7 17 29 12)(8 13 30 18)
(1 3 5 7)(2 4 6 8)(9 11 13 15)(10 12 14 16)(17 19 21 23)(18 20 22 24)(25 27 29 31)(26 28 30 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(2 32)(4 26)(6 28)(8 30)(9 22)(11 24)(13 18)(15 20)
(1 31)(2 32)(3 25)(4 26)(5 27)(6 28)(7 29)(8 30)(9 18)(10 19)(11 20)(12 21)(13 22)(14 23)(15 24)(16 17)
G:=sub<Sym(32)| (1,19,31,14)(2,15,32,20)(3,21,25,16)(4,9,26,22)(5,23,27,10)(6,11,28,24)(7,17,29,12)(8,13,30,18), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,32)(4,26)(6,28)(8,30)(9,22)(11,24)(13,18)(15,20), (1,31)(2,32)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,18)(10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,17)>;
G:=Group( (1,19,31,14)(2,15,32,20)(3,21,25,16)(4,9,26,22)(5,23,27,10)(6,11,28,24)(7,17,29,12)(8,13,30,18), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,32)(4,26)(6,28)(8,30)(9,22)(11,24)(13,18)(15,20), (1,31)(2,32)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,18)(10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,17) );
G=PermutationGroup([[(1,19,31,14),(2,15,32,20),(3,21,25,16),(4,9,26,22),(5,23,27,10),(6,11,28,24),(7,17,29,12),(8,13,30,18)], [(1,3,5,7),(2,4,6,8),(9,11,13,15),(10,12,14,16),(17,19,21,23),(18,20,22,24),(25,27,29,31),(26,28,30,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(2,32),(4,26),(6,28),(8,30),(9,22),(11,24),(13,18),(15,20)], [(1,31),(2,32),(3,25),(4,26),(5,27),(6,28),(7,29),(8,30),(9,18),(10,19),(11,20),(12,21),(13,22),(14,23),(15,24),(16,17)]])
50 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 4A | 4B | 4C | 4D | 4E | ··· | 4P | 4Q | ··· | 4U | 8A | ··· | 8H | 8I | ··· | 8T |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | ··· | 4 | 8 | ··· | 8 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
50 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | ||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | C4○D4 | C8○D4 | Q8○M4(2) |
kernel | C42.262C23 | C8○2M4(2) | C2×C22⋊C8 | C24.4C4 | C42.6C22 | C42.12C4 | C42.6C4 | C42.7C22 | C2×C42⋊C2 | C2×C22⋊C4 | C2×C4⋊C4 | C42⋊C2 | C2×C4 | C22 | C2 |
# reps | 1 | 2 | 1 | 1 | 2 | 2 | 2 | 4 | 1 | 4 | 4 | 8 | 8 | 8 | 2 |
Matrix representation of C42.262C23 ►in GL4(𝔽17) generated by
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 4 | 0 |
0 | 0 | 9 | 13 |
4 | 0 | 0 | 0 |
0 | 4 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
2 | 0 | 0 | 0 |
0 | 2 | 0 | 0 |
0 | 0 | 2 | 2 |
0 | 0 | 7 | 15 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 15 | 16 |
1 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
G:=sub<GL(4,GF(17))| [0,1,0,0,1,0,0,0,0,0,4,9,0,0,0,13],[4,0,0,0,0,4,0,0,0,0,1,0,0,0,0,1],[2,0,0,0,0,2,0,0,0,0,2,7,0,0,2,15],[1,0,0,0,0,1,0,0,0,0,1,15,0,0,0,16],[1,0,0,0,0,16,0,0,0,0,16,0,0,0,0,16] >;
C42.262C23 in GAP, Magma, Sage, TeX
C_4^2._{262}C_2^3
% in TeX
G:=Group("C4^2.262C2^3");
// GroupNames label
G:=SmallGroup(128,1656);
// by ID
G=gap.SmallGroup(128,1656);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,100,521,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=b^4=d^2=e^2=1,c^2=b,a*b=b*a,c*a*c^-1=a^-1,a*d=d*a,e*a*e=a*b^2,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d=a^2*c,c*e=e*c,d*e=e*d>;
// generators/relations